1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
use core::sync::atomic::{AtomicBool, Ordering, ATOMIC_BOOL_INIT};
use core::cell::UnsafeCell;
use core::marker::Sync;
use core::ops::{Drop, Deref, DerefMut};
use core::fmt;
use core::option::Option::{self, None, Some};
use core::default::Default;

/// This type provides MUTual EXclusion based on spinning.
///
/// # Description
///
/// This structure behaves a lot like a normal Mutex. There are some differences:
///
/// - It may be used outside the runtime.
///   - A normal mutex will fail when used without the runtime, this will just lock
///   - When the runtime is present, it will call the deschedule function when appropriate
/// - No lock poisoning. When a fail occurs when the lock is held, no guarantees are made
///
/// When calling rust functions from bare threads, such as C `pthread`s, this lock will be very
/// helpful. In other cases however, you are encouraged to use the locks from the standard
/// library.
///
/// # Simple example
///
/// ```
/// use spin;
/// let spin_mutex = spin::Mutex::new(0);
///
/// // Modify the data
/// {
///     let mut data = spin_mutex.lock();
///     *data = 2;
/// }
///
/// // Read the data
/// let answer =
/// {
///     let data = spin_mutex.lock();
///     *data
/// };
///
/// assert_eq!(answer, 2);
/// ```
///
/// # Thread-safety example
///
/// ```
/// use spin;
/// use std::sync::{Arc, Barrier};
///
/// let numthreads = 1000;
/// let spin_mutex = Arc::new(spin::Mutex::new(0));
///
/// // We use a barrier to ensure the readout happens after all writing
/// let barrier = Arc::new(Barrier::new(numthreads + 1));
///
/// for _ in (0..numthreads)
/// {
///     let my_barrier = barrier.clone();
///     let my_lock = spin_mutex.clone();
///     std::thread::spawn(move||
///     {
///         let mut guard = my_lock.lock();
///         *guard += 1;
///
///         // Release the lock to prevent a deadlock
///         drop(guard);
///         my_barrier.wait();
///     });
/// }
///
/// barrier.wait();
///
/// let answer = { *spin_mutex.lock() };
/// assert_eq!(answer, numthreads);
/// ```
pub struct Mutex<T>
{
    lock: AtomicBool,
    data: UnsafeCell<T>,
}

/// A guard to which the protected data can be accessed
///
/// When the guard falls out of scope it will release the lock.
pub struct MutexGuard<'a, T:'a>
{
    lock: &'a AtomicBool,
    data: &'a mut T,
}

unsafe impl<T> Sync for Mutex<T> {}

/// Called while spinning (name borrowed from Linux). Can be implemented to call
/// a platform-specific method of lightening CPU load in spinlocks.
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
#[inline(always)]
fn cpu_relax() {
    // This instruction is meant for usage in spinlock loops
    // (see Intel x86 manual, III, 4.2)
    unsafe { asm!("pause" :::: "volatile"); }
}

#[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
#[inline(always)]
fn cpu_relax() {
}


impl<T> Mutex<T>
{
    /// Creates a new spinlock wrapping the supplied data.
    ///
    /// May be used statically:
    ///
    /// ```
    /// #![feature(const_fn)]
    /// use spin;
    ///
    /// static MUTEX: spin::Mutex<()> = spin::Mutex::new(());
    ///
    /// fn demo() {
    ///     let lock = MUTEX.lock();
    ///     // do something with lock
    ///     drop(lock);
    /// }
    /// ```
    pub const fn new(user_data: T) -> Mutex<T>
    {
        Mutex
        {
            lock: ATOMIC_BOOL_INIT,
            data: UnsafeCell::new(user_data),
        }
    }

    fn obtain_lock(&self)
    {
        while self.lock.compare_and_swap(false, true, Ordering::SeqCst) != false
        {
            cpu_relax();
        }
    }

    /// Locks the spinlock and returns a guard.
    ///
    /// The returned value may be dereferenced for data access
    /// and the lock will be dropped when the guard falls out of scope.
    ///
    /// ```
    /// let mylock = spin::Mutex::new(0);
    /// {
    ///     let mut data = mylock.lock();
    ///     // The lock is now locked and the data can be accessed
    ///     *data += 1;
    ///     // The lock is implicitly dropped
    /// }
    ///
    /// ```
    pub fn lock(&self) -> MutexGuard<T>
    {
        self.obtain_lock();
        MutexGuard
        {
            lock: &self.lock,
            data: unsafe { &mut *self.data.get() },
        }
    }

    /// Tries to lock the mutex. If it is already locked, it will return None. Otherwise it returns
    /// a guard within Some.
    fn try_lock(&self) -> Option<MutexGuard<T>>
    {
        if self.lock.compare_and_swap(false, true, Ordering::SeqCst) == false
        {
            Some(
                MutexGuard {
                    lock: &self.lock,
                    data: unsafe { &mut *self.data.get() },
                }
            )
        }
        else
        {
            None
        }
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T>
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result
    {
        match self.try_lock()
        {
            Some(guard) => write!(f, "Mutex {{ data: {:?} }}", &*guard),
            None => write!(f, "Mutex {{ <locked> }}"),
        }
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<'a, T> Deref for MutexGuard<'a, T>
{
    type Target = T;
    fn deref<'b>(&'b self) -> &'b T { &*self.data }
}

impl<'a, T> DerefMut for MutexGuard<'a, T>
{
    fn deref_mut<'b>(&'b mut self) -> &'b mut T { &mut *self.data }
}

impl<'a, T> Drop for MutexGuard<'a, T>
{
    /// The dropping of the MutexGuard will release the lock it was created from.
    fn drop(&mut self)
    {
        self.lock.store(false, Ordering::SeqCst);
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn try_lock() {
        let mutex = Mutex::new(42);

        // First lock succeeds
        let a = mutex.try_lock();
        assert!(a.is_some());

        // Additional lock failes
        let b = mutex.try_lock();
        assert!(b.is_none());

        // After dropping lock, it succeeds again
        ::core::mem::drop(a);
        let c = mutex.try_lock();
        assert!(c.is_some());
    }
}