1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
use core::sync::atomic::{AtomicBool, Ordering, ATOMIC_BOOL_INIT}; use core::cell::UnsafeCell; use core::marker::Sync; use core::ops::{Drop, Deref, DerefMut}; use core::fmt; use core::option::Option::{self, None, Some}; use core::default::Default; /// This type provides MUTual EXclusion based on spinning. /// /// # Description /// /// This structure behaves a lot like a normal Mutex. There are some differences: /// /// - It may be used outside the runtime. /// - A normal mutex will fail when used without the runtime, this will just lock /// - When the runtime is present, it will call the deschedule function when appropriate /// - No lock poisoning. When a fail occurs when the lock is held, no guarantees are made /// /// When calling rust functions from bare threads, such as C `pthread`s, this lock will be very /// helpful. In other cases however, you are encouraged to use the locks from the standard /// library. /// /// # Simple example /// /// ``` /// use spin; /// let spin_mutex = spin::Mutex::new(0); /// /// // Modify the data /// { /// let mut data = spin_mutex.lock(); /// *data = 2; /// } /// /// // Read the data /// let answer = /// { /// let data = spin_mutex.lock(); /// *data /// }; /// /// assert_eq!(answer, 2); /// ``` /// /// # Thread-safety example /// /// ``` /// use spin; /// use std::sync::{Arc, Barrier}; /// /// let numthreads = 1000; /// let spin_mutex = Arc::new(spin::Mutex::new(0)); /// /// // We use a barrier to ensure the readout happens after all writing /// let barrier = Arc::new(Barrier::new(numthreads + 1)); /// /// for _ in (0..numthreads) /// { /// let my_barrier = barrier.clone(); /// let my_lock = spin_mutex.clone(); /// std::thread::spawn(move|| /// { /// let mut guard = my_lock.lock(); /// *guard += 1; /// /// // Release the lock to prevent a deadlock /// drop(guard); /// my_barrier.wait(); /// }); /// } /// /// barrier.wait(); /// /// let answer = { *spin_mutex.lock() }; /// assert_eq!(answer, numthreads); /// ``` pub struct Mutex<T> { lock: AtomicBool, data: UnsafeCell<T>, } /// A guard to which the protected data can be accessed /// /// When the guard falls out of scope it will release the lock. pub struct MutexGuard<'a, T:'a> { lock: &'a AtomicBool, data: &'a mut T, } unsafe impl<T> Sync for Mutex<T> {} /// Called while spinning (name borrowed from Linux). Can be implemented to call /// a platform-specific method of lightening CPU load in spinlocks. #[cfg(any(target_arch = "x86", target_arch = "x86_64"))] #[inline(always)] fn cpu_relax() { // This instruction is meant for usage in spinlock loops // (see Intel x86 manual, III, 4.2) unsafe { asm!("pause" :::: "volatile"); } } #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))] #[inline(always)] fn cpu_relax() { } impl<T> Mutex<T> { /// Creates a new spinlock wrapping the supplied data. /// /// May be used statically: /// /// ``` /// #![feature(const_fn)] /// use spin; /// /// static MUTEX: spin::Mutex<()> = spin::Mutex::new(()); /// /// fn demo() { /// let lock = MUTEX.lock(); /// // do something with lock /// drop(lock); /// } /// ``` pub const fn new(user_data: T) -> Mutex<T> { Mutex { lock: ATOMIC_BOOL_INIT, data: UnsafeCell::new(user_data), } } fn obtain_lock(&self) { while self.lock.compare_and_swap(false, true, Ordering::SeqCst) != false { cpu_relax(); } } /// Locks the spinlock and returns a guard. /// /// The returned value may be dereferenced for data access /// and the lock will be dropped when the guard falls out of scope. /// /// ``` /// let mylock = spin::Mutex::new(0); /// { /// let mut data = mylock.lock(); /// // The lock is now locked and the data can be accessed /// *data += 1; /// // The lock is implicitly dropped /// } /// /// ``` pub fn lock(&self) -> MutexGuard<T> { self.obtain_lock(); MutexGuard { lock: &self.lock, data: unsafe { &mut *self.data.get() }, } } /// Tries to lock the mutex. If it is already locked, it will return None. Otherwise it returns /// a guard within Some. fn try_lock(&self) -> Option<MutexGuard<T>> { if self.lock.compare_and_swap(false, true, Ordering::SeqCst) == false { Some( MutexGuard { lock: &self.lock, data: unsafe { &mut *self.data.get() }, } ) } else { None } } } impl<T: fmt::Debug> fmt::Debug for Mutex<T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match self.try_lock() { Some(guard) => write!(f, "Mutex {{ data: {:?} }}", &*guard), None => write!(f, "Mutex {{ <locked> }}"), } } } impl<T: Default> Default for Mutex<T> { fn default() -> Mutex<T> { Mutex::new(Default::default()) } } impl<'a, T> Deref for MutexGuard<'a, T> { type Target = T; fn deref<'b>(&'b self) -> &'b T { &*self.data } } impl<'a, T> DerefMut for MutexGuard<'a, T> { fn deref_mut<'b>(&'b mut self) -> &'b mut T { &mut *self.data } } impl<'a, T> Drop for MutexGuard<'a, T> { /// The dropping of the MutexGuard will release the lock it was created from. fn drop(&mut self) { self.lock.store(false, Ordering::SeqCst); } } #[cfg(test)] mod test { use super::*; #[test] fn try_lock() { let mutex = Mutex::new(42); // First lock succeeds let a = mutex.try_lock(); assert!(a.is_some()); // Additional lock failes let b = mutex.try_lock(); assert!(b.is_none()); // After dropping lock, it succeeds again ::core::mem::drop(a); let c = mutex.try_lock(); assert!(c.is_some()); } }